Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.

Identifieur interne : 000650 ( Main/Exploration ); précédent : 000649; suivant : 000651

The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.

Auteurs : D Johan Van Den Hoogen [Pays-Bas] ; Harold J G. Meijer [Pays-Bas] ; Michael F. Seidl [Pays-Bas] ; Francine Govers [Pays-Bas]

Source :

RBID : pubmed:29362235

Descripteurs français

English descriptors

Abstract

Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses.IMPORTANCE G-protein-coupled receptors (GPCRs) are central sensors that activate eukaryotic signaling and are the primary targets of human drugs. In this report, we provide evidence for the widespread though limited presence of a novel class of GPCRs in a variety of unicellular eukaryotes. These include free-living organisms and organisms that are pathogenic for plants, animals, and humans. The novel GPCRs have a C-terminal phospholipid kinase domain, pointing to a direct link between sensing external signals via GPCRs and downstream intracellular phospholipid signaling. Genes encoding these receptors were likely present in the last common eukaryotic ancestor and were lost during the evolution of higher eukaryotes. We further describe five other types of GPCRs with a catalytic accessory domain, the so-called GPCR-bigrams, four of which may potentially have a role in signaling. These findings shed new light onto signal transduction in microorganisms and provide evidence for alternative eukaryotic signaling pathways.

DOI: 10.1128/mBio.02119-17
PubMed: 29362235
PubMed Central: PMC5784254


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.</title>
<author>
<name sortKey="Van Den Hoogen, D Johan" sort="Van Den Hoogen, D Johan" uniqKey="Van Den Hoogen D" first="D Johan" last="Van Den Hoogen">D Johan Van Den Hoogen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meijer, Harold J G" sort="Meijer, Harold J G" uniqKey="Meijer H" first="Harold J G" last="Meijer">Harold J G. Meijer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen Plant Research, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen Plant Research, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands francine.govers@wur.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29362235</idno>
<idno type="pmid">29362235</idno>
<idno type="doi">10.1128/mBio.02119-17</idno>
<idno type="pmc">PMC5784254</idno>
<idno type="wicri:Area/Main/Corpus">000844</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000844</idno>
<idno type="wicri:Area/Main/Curation">000844</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000844</idno>
<idno type="wicri:Area/Main/Exploration">000844</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.</title>
<author>
<name sortKey="Van Den Hoogen, D Johan" sort="Van Den Hoogen, D Johan" uniqKey="Van Den Hoogen D" first="D Johan" last="Van Den Hoogen">D Johan Van Den Hoogen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meijer, Harold J G" sort="Meijer, Harold J G" uniqKey="Meijer H" first="Harold J G" last="Meijer">Harold J G. Meijer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen Plant Research, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen Plant Research, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands francine.govers@wur.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquatic Organisms (enzymology)</term>
<term>Eukaryota (enzymology)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Receptors, G-Protein-Coupled (genetics)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Eucaryotes (enzymologie)</term>
<term>Organismes aquatiques (enzymologie)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Récepteurs couplés aux protéines G (génétique)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Eucaryotes</term>
<term>Organismes aquatiques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Aquatic Organisms</term>
<term>Eukaryota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phylogeny</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses.
<b>IMPORTANCE</b>
G-protein-coupled receptors (GPCRs) are central sensors that activate eukaryotic signaling and are the primary targets of human drugs. In this report, we provide evidence for the widespread though limited presence of a novel class of GPCRs in a variety of unicellular eukaryotes. These include free-living organisms and organisms that are pathogenic for plants, animals, and humans. The novel GPCRs have a C-terminal phospholipid kinase domain, pointing to a direct link between sensing external signals via GPCRs and downstream intracellular phospholipid signaling. Genes encoding these receptors were likely present in the last common eukaryotic ancestor and were lost during the evolution of higher eukaryotes. We further describe five other types of GPCRs with a catalytic accessory domain, the so-called GPCR-bigrams, four of which may potentially have a role in signaling. These findings shed new light onto signal transduction in microorganisms and provide evidence for alternative eukaryotic signaling pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29362235</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02119-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02119-17</ELocationID>
<Abstract>
<AbstractText>Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses.
<b>IMPORTANCE</b>
G-protein-coupled receptors (GPCRs) are central sensors that activate eukaryotic signaling and are the primary targets of human drugs. In this report, we provide evidence for the widespread though limited presence of a novel class of GPCRs in a variety of unicellular eukaryotes. These include free-living organisms and organisms that are pathogenic for plants, animals, and humans. The novel GPCRs have a C-terminal phospholipid kinase domain, pointing to a direct link between sensing external signals via GPCRs and downstream intracellular phospholipid signaling. Genes encoding these receptors were likely present in the last common eukaryotic ancestor and were lost during the evolution of higher eukaryotes. We further describe five other types of GPCRs with a catalytic accessory domain, the so-called GPCR-bigrams, four of which may potentially have a role in signaling. These findings shed new light onto signal transduction in microorganisms and provide evidence for alternative eukaryotic signaling pathways.</AbstractText>
<CopyrightInformation>Copyright © 2018 van den Hoogen et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>van den Hoogen</LastName>
<ForeName>D Johan</ForeName>
<Initials>DJ</Initials>
<Identifier Source="ORCID">0000-0001-6624-8461</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meijer</LastName>
<ForeName>Harold J G</ForeName>
<Initials>HJG</Initials>
<Identifier Source="ORCID">0000-0002-0883-219X</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Business Unit Biointeractions and Plant Health, Wageningen University and Research, Wageningen Plant Research, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seidl</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
<Identifier Source="ORCID">0000-0002-5218-2083</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Govers</LastName>
<ForeName>Francine</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0001-5311-929X</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands francine.govers@wur.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D059001" MajorTopicYN="N">Aquatic Organisms</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">G-protein-coupled receptors</Keyword>
<Keyword MajorTopicYN="Y">Phytophthora</Keyword>
<Keyword MajorTopicYN="Y">cell signaling</Keyword>
<Keyword MajorTopicYN="Y">oomycetes</Keyword>
<Keyword MajorTopicYN="Y">phospholipid-mediated signaling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29362235</ArticleId>
<ArticleId IdType="pii">mBio.02119-17</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02119-17</ArticleId>
<ArticleId IdType="pmc">PMC5784254</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 4;353(4):911-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16198373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(4):378-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9632836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Oct 05;16:741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 9;274(15):9907-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10187762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25943547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2013 Jan;164(1):2-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23083534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Apr;88(2):352-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23448716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D581-D591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 21;459(7245):356-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Dec 09;11:700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 May;15(5):357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):373-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23895660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Jan;27(1):161-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19762334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Mar;15(3):509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2013 Mar 27;3(3):120186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 May 20;12:254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21599950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Feb;51(4):925-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14763970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Dec;4(12):1963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 14;338(5):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 11;8(11):e78848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24244373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Dec;20(12):670-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Aug;9(8):605-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18591983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1993 Dec;9(6):745-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8143162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Apr;88(2):382-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23448757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jun;32(5):1002-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2005 May;67(5):1414-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Apr 12;2(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-1551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jan 6;24(1):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 9;444(7116):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jul 25;12(7):R66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21787419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 5;140(5):606-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Mar;2(3):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16596165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Sep;14(9):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16876997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2014 Mar;6(3):606-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24567306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):4781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22073313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Nov 15;33(22):3645-3647</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 30;5:9972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26126083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 22;126(6):1079-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2009 Apr 29;302(2):118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19418628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 5;140(5):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27327-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2009;49:31-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18834311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1998 Feb;8(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2011 Aug 01;10(8):579-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(5):209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20441612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1616-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2001 Mar;53(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Sep;17(9):849-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2007 Dec 1;312(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17950724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jan;5(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 16;286(50):43282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22016392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Gueldre (province)</li>
</region>
<settlement>
<li>Wageningue</li>
</settlement>
<orgName>
<li>Université de Wageningue</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Gueldre (province)">
<name sortKey="Van Den Hoogen, D Johan" sort="Van Den Hoogen, D Johan" uniqKey="Van Den Hoogen D" first="D Johan" last="Van Den Hoogen">D Johan Van Den Hoogen</name>
</region>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<name sortKey="Meijer, Harold J G" sort="Meijer, Harold J G" uniqKey="Meijer H" first="Harold J G" last="Meijer">Harold J G. Meijer</name>
<name sortKey="Meijer, Harold J G" sort="Meijer, Harold J G" uniqKey="Meijer H" first="Harold J G" last="Meijer">Harold J G. Meijer</name>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000650 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000650 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29362235
   |texte=   The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29362235" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024